
 SOA.ARMY.MIL

 Publications

The Big Elephant in the Army‘s
SOA Room – XML Data Strategy
MAJ Manny Rivera, Army CIO/G6

Enterprise Architect, Army SOA

May 29
th
, 2007 (v.1.0)

https://soa.army.mil/publications i

Table of Contents

Executive Summary .. 1

Avoiding Confusion by using XML Namespace .. 3

XML Namespace is all about Scope ... 4
Defining the namespace ... 7
URIs and Namespace ... 8
Army SOA XML Data Strategy # 1 ... 10

XML Data Schemas ... 13

Schemas and the communication layer ... 13
Creating the schema .. 15
Army SOA XML Data Strategy # 2 ... 16

Web Services Description language (WSDL) .. 19

WSDL Basics ... 19
WSDL Definition Element .. 21
WSDL Types Element ... 21
WSDL Message and Part Element ... 22
Army SOA XML Data Strategy # 3 ... 23

The transport Layer- SOAP ... 25

SOAP Basics .. 25
SOAP Body Element ... 26

Summary .. 28

Cover is for

position only

https://soa.army.mil/publications 1

Executive Summary

The Army‘s SOA strategy has eight distinct components working together orchestrating

the composition and choreography of a very complex system. At the core of the system

are objects represented as Web services. Many SOA architects believe everything begins

with Web services, and therefore most of the SOA efforts are directed at the service

orientation of these Web services, which includes:

 Loose coupling

 Service Contract

 Autonomy

 Abstraction

 Reusability

 Composability

 Statelessness

 Discoverability

The Army should focus on service orientation and the above mentioned characteristics,

but before we can get there from where we currently are, we must first focus on what

got us here in the first place; ‗XML‖. In fact, everything in the world of SOA begins with

XML. It is the standard from which multiple supplementary standards have evolved to

form the core data representation (model) architecture. It is this core set of standards

that has fueled the creation of the many Web services specifications that are now driving

SOA: SOAP, WSDL, XSD and the list goes on and on.

The Army and most DoD service components have put incredible amount of time

identifying an Enterprise Data model (singular) and strategy, but there are challenges

with a single data model approach. A single data model capable of spanning all Army

Mission Areas (MA) would be very large, inflexible and difficult to maintain. This can put

https://soa.army.mil/publications 2

huge burdens on developed Web services, therefore, developers will be forced to find

cleaner techniques, which in turn leads to inconsistencies and interoperability problems.

With one super data model to pull from, it makes it nearly impossible for validation and

transportation; especially in cases where a Web service only requires a couple of

elements to be validated for usage. At the end of the day, the Army should recognize that

it is not about identifying super models, but, about the modularity, structure and

validation of XML Data for usage by services in the background.

XML is incredibly modular, and the use of XML within Web services allows for the

consumption of XML data from any model; JC3IEDM, GML, or a DoD agreed upon

common standard.

This document will focus on standardizing the manner in which the Army‘s SOA

represents, validates and process ―Data‖ as it travels throughout application

environments (both within and between Web services) and it lays the groundwork for a

robust, optimized and interoperable SOA.

Key concepts covered in this document are: XML namespace, XML Schemas (XSD), SOAP,

WSDL and Web services.

https://soa.army.mil/publications 3

Avoiding Confusion by using XML Namespace

As illustrated in figure 1, XML Data Strategy cuts across all Mission Areas (MAs). Because

Data is represented differently in the MAs, it is very important for Web services to know

the precise owner of particular data elements in the Enterprise.

https://soa.army.mil/publications 4

The purpose of an XML namespace is to allow the deployment of XML vocabularies (in

which element and attribute names are defined) in a global environment and to reduce

the risk of name collisions in a given document when vocabularies are combined. For

example, the JC3IEDM and GML models both may define an element named position.

Although XML data from different formats such as JC3IEDM and GML can be combined in

a single document, in this case there could be ambiguity about which position element

was intended. XML Namespaces provide a method to avoid element name conflicts by

taking advantage of existing systems for allocating globally scoped names.

XML Namespace is all about Scope

XML Data representation is not a problem when the data is scoped within its own domain.

For example, here are two distinct XML data documents (payloads):

<person>

 

 <Name>Joe Smith</Name>

 <SSN>111-11-1111</SSN>

 <Unit>A Co, 2/34
th

</Unit>

</person>

<person>

 

 <Name>Lucas, Joe</Name>

 <SSN>222222222</SSN>

 <UID>56A235</UID>

</person>

The top XML data structure is the representation of a person, and it includes an image,

name, SSN and Unit as its elements. This data structure could easily belong to a model

inside the WMA. The bottom XML data structure is also the representation of a person,

and it includes some of the elements from the top. However, instead of Unit as an

element, it has UID; also the way Name and SSN are represented is different in the

second one. The second XML data structure could easily belong to a model in the BMA.

https://soa.army.mil/publications 5

As long as the XML data is one Web service to one MA (one-to-one), no conflict exist. As

figure 2 illustrates, XML data payloads can flow from MAs1 through authoritative sources

and Web services with no problem. The conflict happens when a Web service needs data

1 Although technically correct, XML data payloads can flow from any domain or system, we are representing it

notionally as a top level (MA) structure for demonstration purposes.

https://soa.army.mil/publications 6

from multiple places (or Mission Areas in our example); a very common occurrence in the

SOA world. When this happens, as illustrated in figure 3, conflict exists and the Web

service is not able to de-conflict the data structures; scope is no longer local to one MA,

it changed to one Web service to many MAs (one-to-many).

https://soa.army.mil/publications 7

Element type names clash when two or more XML data models use the same element

type name to represent different real-world ideas or values.

Because the community using XML is already large and will grow further, the possibility

that element type names will clash in shared documents and models becomes very real.

The likelihood of element name clashes also increases as more XML documents

(payloads) are shared outside defined groups.

Clearly, a mechanism is needed to distinguish a person in the WMA from a person in the

BMA. We need to be able to express in XML, similar distinctions. In XML, elements are

distinguished by using ―namespaces.‖

A concept similar to XML namespaces exists in some programming languages. For

example, in Java, a particular class must have a unique name, to avoid ambiguity. In

Java, a package provides a broad equivalent to the concept of XML namespaces. A class

must have a name that is unique within a package. Classes in other packages might have

the same class name, but because they are in a different package, there is no risk of

confusion as the code is processed.

As in Java, each XML element in an XML namespace must have a unique name;

otherwise, confusion can arise.

Defining the namespace

To clearly distinguish the person element here data modelers would need to provide more

information about the element type name than simply person:

<person>

 

 <Name>Joe Smith</Name>

 <SSN>111-11-1111</SSN>

 <Unit>A Co, 2/34th</Unit>

</person>

from the person element here

<person>

 

https://soa.army.mil/publications 8

 <Name>Lucas, Joe</Name>

 <SSN>222222222</SSN>

 <UID>56A235</UID>

</person>

The solution to this, in the XML standards, is a qualified name. This is often abbreviated

as QName. A qualified name is an XML element type name that consists of two parts—a

namespace prefix and a local part separated by the colon character (:).

Data modelers can distinguish elements using qualified names (QNames). Referring back

to the earlier example, the WMA version of a person could use the QName wma:person.

This would distinguish it from possible QNames for the BMA person element types,

perhaps expressed as bma:person.

Each QName consists of a namespace prefix, a colon character, and a local part. The

local part is what we have called the element type name in a non–namespace-aware

document.

The closest analogy we can make for namespace is by using a person‘s last name:

smith:person. This Qname tells us: smith is the owner of an element called person.

Now, every time we need to reference an element belonging to smith, we just initialize it

with smith‘s last name, a colon and then the element smith owns.

To be fair, using QNames on their own may produce problems similar to those we are

trying to avoid. For example, the wma:person element might itself lead to ambiguity.

Are we referring to a WMA person in JC3IEDM data model or wma person in a WMA IED

data model? Similarly, if we refer to bma:person elements, which of potentially many

element types created by individual BMA models are we referring to?

The Army needs a more universal way to distinguish namespaces than simply using

namespace prefixes alone. A potential solution to achieving unique identification of a

namespace is to use a uniform resource identifier (URI) and mapping a namespace prefix

to it.

URIs and Namespace

In XML namespaces, the namespace name is a uniform resource identifier (URI).

https://soa.army.mil/publications 9

A URI is a potentially lengthy sequence of characters. For example, an approach is to

create a document type for a particular structure of document. We could choose

namespace URIs:

 http://soa.army.mil/schemas/wma

 http://soa.army.mil/schemas/bma

 http://soa.army.mil/schemas/ima

 http://soa.army.mil/schemas/eiema

Declaring a namespace involves associating the namespace prefix with the namespace

URI. In XML, this is done by using a special type of attribute called a namespace

declaration.

To be used in an XML document, a namespace must be declared. A namespace

declaration is made in the start tag of the element to which it refers. A namespace

declaration has a special structure. For most namespace declarations, the attribute name

begins with the character sequence xmlns, followed by a colon and the namespace prefix.

These are followed by an equal sign (=) and the namespace URI enclosed in a pair of

double or single quotation marks:

xmlns:WMA=”http://soa.army.mil/schemas/wma”

Here‘s the previous example using qualified namespaces:

<?xml version="1.0"?>

<wma:person xmlns:wma="http://soa.army.mil/schemas/wma"
 xmlns:bma="http://soa.army.mil/schemas/bma">

 <wma:image>1110010101</wma:image>

 <wma:Name>Joe Smith</wma:Name>

 <wma:SSN>111-11-1111</wma:SSN>

 <wma:Unit>A Co, 2/34th</wma:Unit>

 <bma:person>
 <bma:image>1110010101</bma:image>

 <bma:Name>Lucas, Joe</bma:Name>

 <bma:SSN>222222222</bma:SSN>

 <bma:UID>56A325</bma:UID>

http://soa.army.mil/schemas/wma
http://soa.army.mil/schemas/bma
http://soa.army.mil/schemas/ima
http://soa.army.mil/schemas/eiema

https://soa.army.mil/publications 10

 </bma:person >
</wma:person >

The XML code snippet from above disambiguates elements by using qualified

namespaces. With this structure in place, we can easily direct our documents to use the

right elements anywhere in the enterprise. A good example would be using a BMA

element inside the WMA structure: (the only rule is, the element must be of the same

data type and formats; we will cover data types in the schema section)

<wma:person>
 <bma:image>1110010101</wma:image>

 <wma:Name>Joe Smith</wma:Name>

 <wma:SSN>111-11-1111</wma:SSN>

 <wma:Unit>A Co, 2/34th</wma:Unit>
</wma:person >

Army SOA XML Data Strategy # 1

In order to standardize namespace resolutions, the Army CIO/G-6, Army Architecture

Integration Cell (AAIC) is defining four (4) parent namespace scopes within the SOA

foundation architecture. These namespace scopes will be the authoritative name

attributes to be used inside the Foundation. The following structure is proposed:

1. Four Mission Area authoritative Namespaces for NIPR environment:

o http://soa.army.mil/schemas/wma

o http://soa.army.mil/schemas/bma

o http://soa.army.mil/schemas/ima

o http://soa.army.mil/schemas/eiema

Each namespace will have authoritative sub-namespaces, these namespaces will be

governed and certified by the Army SOA Data certification group, chartered by the

CIO/G-6. A web presence will be maintained for each parent namespace and a list of all

available sub-namespaces will be displayed when an entity navigates to a parent

namespace location. For example:

http://soa.army.mil/schemas/wma
http://soa.army.mil/schemas/bma
http://soa.army.mil/schemas/ima
http://soa.army.mil/schemas/eiema

https://soa.army.mil/publications 11

http://soa.army.mil/schemas/wma will display sub-namespaces belonging to the WMA

parent namespace:

1. http://soa.army.mil/schemas/wma/jc3iedm

2. http://soa.army.mil/schemas/wma/gml

3. http://soa.army.mil/schemas/wma/bft

A representation of the BMA namespace may have sub-namespaces as follows:

1. http://soa.army.mil/schemas/bma/bpel

2. http://soa.army.mil/schemas/bma/log

3. http://soa.army.mil/schemas/bma/hr

An automated mechanism will be in place for validation and certification of sub-

namespaces. The certifying entity will ensure namespaces are also register with DISA‘s

namespace registry.

2. Four Mission Area authoritative Namespaces for SIPR environment:

o http://soa.army.smil.mil/schemas/wma

o http://soa.army.smil.mil/schemas/bma

o http://soa.army.smil.mil/schemas/ima

o http://soa.army.smil.mil/schemas/eiema

The same sub-namespace structure will be available for the SIPR implementation. Both,

NIPR and SIPR namespace structure should maintain the same sub-namespaces for

compatibility.

3. For disconnected and enclave solutions a file structure will be used for both the NIPR

and the SIPR. The file structure will be an exact representation of the web presence. The

namespace folders will maintain the sub-namespaces as folder locations within the file

system. See figure 4, for an example.

http://soa.army.mil/schemas/wma
http://soa.army.mil/schemas/wma/jc3iedm
http://soa.army.mil/schemas/wma/gml
http://soa.army.mil/schemas/wma/bft
http://soa.army.mil/schemas/bma/bpel
http://soa.army.mil/schemas/bma/log
http://soa.army.mil/schemas/bma/hr
http://soa.army.smil.mil/schemas/wma
http://soa.army.smil.mil/schemas/bma
http://soa.army.smil.mil/schemas/ima
http://soa.army.smil.mil/schemas/eiema

https://soa.army.mil/publications 12

With these namespace structures in place, data models will no longer drive data strategy.

XML modularity will allow for multiple models to be used within one XML document

(payload), while data models continue to provide their intended benefits; data definition.

The next section will build upon XML namespaces by providing the mechanism that

ensures our XML data is compliant to the specific namespaces that owns it; this

mechanism is the XML Schema.

https://soa.army.mil/publications 13

XML Data Schemas

XML Schema is a schema-definition language expressed in XML syntax. To avoid

ambiguity, XML Schema is often referred to as XSD Schema because in an earlier version

it was called XML Schema Definition Language. Recently, the abbreviation WXS has also

come into use to refer to the XML Schema language. An XML Schema describes the

structure of an XML document (payload).

The purpose of an XML Schema is to define the legal building blocks of an XML document

(payload).

An XML Schema:

 defines elements that can appear in a XML document (payload)

 defines attributes that can appear in a XML document (payload)
 defines which elements are child elements
 defines the order of child elements
 defines the number of child elements
 defines whether an element is empty or can include text
 defines data types for elements and attributes
 defines default and fixed values for elements and attributes

Schemas and the communication layer

When sending data from a sender to a receiver, it is essential that both parties have the

same "expectations" about the XML payload. With XML Schemas, the sender can describe

the data in a way that the receiver (Web services) will understand.

A date like: "05-11-2007" will, in some instances, be interpreted as 5 November 2007

and in other as 11 May 2007. However, XML elements with a data type like this:

<date type="date">2007-05-11</date>

ensures a mutual understanding of the content, because the XML data type "date"

requires the format "YYYY-MM-DD".

XML Schemas are extensible, because they are written in XML. With an extensible

Schema definition you can:

https://soa.army.mil/publications 14

 Reuse your Schema in other Schemas
 Create your own data types derived from the standard types
 Reference multiple schemas in the same document

XML schemas are used to validate XML documents (payload). With this in mind, we can

build on the previous person xml document (payload), but instead of using the WMA as

the namespace, let‘s use a sub-namespace below the WMA – JC3IEDM as a namespace

which is the authoritative owner of the person data structure. Also, assume that we will

save the xml document to a file called ―jc3iedm_sample.xml‖

<?xml version="1.0"?>
<JC3IEDM:person xmlns:JC3IEDM=http://soa.army.mil/schemas/wma/jc3iedm
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http:// soa.army.mil/schemas/wma/jc3iedm jc3iedm.xsd

 <JC3IEDM:image>1110010101</JC3IEDM:image>

 <JC3IEDM:Name>Joe Smith</JC3IEDM:Name>

 <JC3IEDM:SSN>111-11-1111</JC3IEDM:SSN>

 <JC3IEDM:Unit>A Co, 2/34th</JC3IEDM:Unit>
</JC3IEDM:person>

By now the only lines that should not be familiar are the ones in blue. The lines in blue

add a reference to an XML Schema.

Once the XML Schema Instance namespace is available:

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Data maodelers can use the schemaLocation attribute, which is an element that belongs

in the www.w3.org namespace. This attribute has two values. The first value is the

namespace to use. The second value is the location of the XML schema to use for that

namespace:

xsi:schemaLocation=" http:// soa.army.mil/schemas/wma/jc3iedm jc3iedm.xsd"

Identifying the schema location is like telling the application (XML parser), go to the web

location http://soa.army.mil/schemas/wma/jc3iedm/jc3iedm.xsd and pull down the

schema file (XSD) and make sure the elements in the file named jc3iedm_sample.xml

are behaving the way they supposed to, if not, send and error message telling the

http://www.w3.org/
http://soa.army.mil/schemas/wma/jc3iedm/jc3iedm.xsd

https://soa.army.mil/publications 15

application the XML document (payload) is not valid. The power of schemas is simple;

they make the data types (or elements) authoritative across usage scenarios.

Creating the schema

Creating the schema document (XSD) is pretty close to creating an XML document. Here

we create the jc3iedm.xsd schema that will validate the jc3iedm_sample.xml document.

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://soa.army.mil/schemas/wma/jc3iedm"
 xmlns=" http://soa.army.mil/schemas/wma/jc3iedm ">

 <xsd:element name="person"/>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="image" type="xsd:base64Binary" />
 <xsd:element name="Name" type="xsd:string" />
 <xsd:element name="SSN" type="xsd:string" />
 <xsd:element name="Unit" type="xsd:string" />
 </xsd:sequence>
 </xsd:complexType>
 </xs:element>
</xsd:schema>

Again, all elements that are preceded by the xsd belong to the www.w3.org namespace.
We used xsd as the prefix, but we could have used any other word.

The XML Schema document (person, is the root) element is declared as follows:

<xsd:element name="person"/>

To find the allowed content of the person element, you need to find the definition of the

complexType below the person definition:

<xsd:complexType>
 <xsd:sequence>
 <xsd:element name="image" type="xsd:base64Binary" />
 <xsd:element name="Name" type="xsd:string" />
 <xsd:element name="SSN" type="xsd:string" />
 <xsd:element name="Unit" type="xsd:string" />
 </xsd:sequence>
</xsd:complexType>

http://www.w3.org/

https://soa.army.mil/publications 16

This definition specifies that a person element is allowed to have a sequence of child

elements (image, Name, SSN and Unit), as defined by the content of the xsd:sequence

element.

The person element is a complex type because it contains other elements. The other

elements (image, Name, SSN and Unit) are simple types because they do not contain

other elements.

The values of some elements are simply strings, as indicated by the xsd:string value for

the type attribute. The xsd:string type is one of many built-in datatypes in W3C XML

Schema.

This may all seem a little complicated, but it is key for validation: if the

jc3iedm_sample.xml document is opened by a web browser or a web service, the

browser/service will automatically pull the jc3iedm.xsd from its location and ensure the

elements: image is of type binary, Name is of type string, SSN is of type string and Unit

is of type string. If the elements in the jc3iedm_sample.xml document do not comply

with these rules, the browser/service will send a not validated message.

Army SOA XML Data Strategy # 2

By now it is very obvious namespaces and schemas work hand-in-hand. As in Strategy

#1, we must standardize the locations these schemas will be positioned. The following

structure is proposed:

The namespace parent structure will be used in combination with schemas locations:

o http://soa.army.mil/schemas/wma

o http://soa.army.mil/schemas/bma

o http://soa.army.mil/schemas/ima

o http://soa.army.mil/schemas/eiema

For each parent location and sub-namespace location (in NIPR, SIPR and File Structure),

a specific XML schema definition will be provided. For example:

4. http://soa.army.mil/schemas/wma/jc3iedm/jc3iedm.xsd

http://soa.army.mil/schemas/wma
http://soa.army.mil/schemas/bma
http://soa.army.mil/schemas/ima
http://soa.army.mil/schemas/eiema
http://soa.army.mil/schemas/wma/jc3iedm/jc3iedm.xsd

https://soa.army.mil/publications 17

5. http://soa.army.mil/schemas/wma/gml/gml.xsd

6. http://soa.army.mil/schemas/wma/bft/bft.xsd

A representation of the BMA schemas may be represented as follows:

4. http://soa.army.mil/schemas/bma/bpel/bpel.xsd

5. http://soa.army.mil/schemas/bma/log/log.xsd

6. http://soa.army.mil/schemas/bma/hr/hr.xsd

A representation of the file schema structure will be as follows:

It is now valid to say ―Communities of Interest (COIs) will dictate the structures of many

XSDs.‖ It is up to the Army‘s SOA Data certification group to work with COIs in order to

deploy the schemas the COIs agree will be authoritative within their sphere of influence.

Now that we have defined the namespace and schema structures, we will see how we

can leverage these structures in a SOA environment. The next sections will cover how

WSDL and SOAP use namespaces and schemas to ensure a standard data validation in

the Enterprise.

http://soa.army.mil/schemas/wma/gml/gml.xsd
http://soa.army.mil/schemas/wma/bft/bft.xsd
http://soa.army.mil/schemas/bma/bpel/bpel.xsd
http://soa.army.mil/schemas/bma/log/log.xsd
http://soa.army.mil/schemas/bma/hr/hr.xsd

https://soa.army.mil/publications 18

On its most fundamental level, SOA is built upon and driven by XML and its standards. As

a result, an adoption of SOA leads to the opportunity to fully leverage the XML data

paradigm. A standardized data representation format (once fully established) can reduce

the underlying complexity of all affected application and document environments.

Some examples include:

 XML documents (payloads) and accompanying XML Schemas (packaged within

SOAP messages) passed between applications or application components fully

standardized. The result is a predictable and therefore easily extendible and

adaptable communication network.

 XML‘s self-descriptive nature enhances the ability for data to be readily interpreted

by architects, analysts and developers and increases the potential for data within

messages to be more easily maintained, traced and understood.

 The standardization level of data representation lays the groundwork for intrinsic

interoperability. Specifically, by promoting the use of standardized vocabularies

(schemas); the need to translate discrepancies between how respective

applications have interpreted Army data models is reduced.

By defining a common structure for namespace and schemas, the Army can fully take

advantage of the SOA paradigm and adjust to architecture changes in the future.

https://soa.army.mil/publications 19

Web Services Description language (WSDL)

Wikipedia describes WSDL as ―an XML-based service description on how to communicate

using web services. The WSDL defines services as collections of network endpoints, or

ports.

WSDL is often used in combination with SOAP and XML Schema to provide web services

over the Internet. A client program connecting to a web service can read the WSDL to

determine what functions are available on the server. Any special data types used are

embedded in the WSDL file in the form of XML Schema. The client can then use SOAP to

actually call one of the functions listed in the WSDL.‖

We will not try to cover the vast aspects of WSDL in this document. We will focus on

those items relating to the namespace and schemas.

WSDL Basics

One of SOA‘s key ingredients is to establish a consistent loosely coupled form of

communication between services implemented as Web services. For this purpose,

description documents are required to accompany any Web service wanting to act as

ultimate receiver. The primary service description document is the WSDL definition

(Figure 5).

https://soa.army.mil/publications 20

A WSDL describes the point of entry for a service provider, also known as a service

endpoint. It provides a formal definition of the endpoint interface (so that requestors

wishing to communicate with the service provider know exactly how to structure request

messages) and also establishes the physical location (address) of the service.

For the purpose of brevity, let‘s break WSDL service definition into two categories:

 Abstract description

 Concrete description

Abstract description:

Establishes the interface characteristics of the Web service without any reference to the

technology used to host or enable a Web service to transmit messages.

Concrete description:

For a Web service to be able to execute any of its logic, it needs for its abstract interface

definition to be connected to some real, implemented technology. Because the execution

of services application logic always involves communication,

the abstract Web service interface needs to be connected to

a physical transport protocol. This connection is defined in

the concrete description.

For the purpose of this document, we will only focus on the

abstract description portion in this section. The SOAP section

will address the concrete description part of the WSDL

definition.

The abstract definition contains a series of parts that include

types, message and port type (or interface), whereas the

concrete definition is comprise of binding and service parts.

Each of these parts relates to corresponding elements that

are defined in the WSDL specification.

https://soa.army.mil/publications 21

WSDL Definition Element

The definition element is the root or parent element of every WSDL document. It houses

all other parts of the service definition and is also the location in which the namespaces

used within the WSDL document are established.

<definitions name=‖Person‖>
 targetNamespace="http://soa.army.mil/schemas/wma/wsdl"
 xmlns=" http://schemas.xmlsoap.org/wsdl"
 xmlns :jc3iedm=" http://soa.army.mil/schemas/wma/jc3iedm"
 xmlns :wma=" http://soa.army.mil/schemas/wma"
 xmlns :bma=" http://soa.army.mil/schemas/bma"
</definitions>

In the preceding example, the service definition is started with a definition element that

contains a series of attributes in which the service is assigned the name of ―Person‖ and

in which a number of namespaces are declared.

WSDL Types Element

The types construct is where XSD schema content is placed. This part of the WSDL can

consist of actual XSD schema markup (an entire schema construct containing type

definitions; like our previous jc3iedm.xsd), or it can contain import or include elements

that reference external schema definitions.

<types>
 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://soa.army.mil/schemas/wma/jc3iedm"
 xmlns=" http://soa.army.mil/schemas/wma/jc3iedm ">

 <xsd:element name="person"/>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="image" type="xsd:base64Binary" />
 <xsd:element name="Name" type="xsd:string" />
 <xsd:element name="SSN" type="xsd:string" />
 <xsd:element name="Unit" type="xsd:string" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>
<types>

The only thing new in the schema above is the type element inside the WSDL document.

Even though we can construct an entire schema inside the WSDL, it becomes very

https://soa.army.mil/publications 22

unmanageable when dealing with big XSD schema definitions. A better solution would be

to import or include the schemas from an external source like the sample below.

<types>
 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 <import schemaLocation="http://soa.army.mil/schemas/wma/jc3iedm/jc3iedm.xsd"
 namespace=‖http://soa.army.mil/schemas/wma/jc3iedm‖/>
 <include schemaLocation=http://soa.army.mil/schemas/bma/bpel/bpel.xsd‖/>
</types>

XSD schemas can be modularized. This allows for one schema document to import the

contents of another. Both import and include elements are used to point to the location of

the XSD schema file that will be pulled in when the schema is processed at runtime. The

above example pulls the jc3iedm.xsd from the WMA JC3IEDM namespace and bpel.xsd

from the BMA BPEL namespace.

The difference between import and include is that include is used to reference schemas

that use the same target namespace as the parent schema, whereas import is used to

point to schemas that use a different target namespace.

WSDL Message and Part Element

For every message a service is designed to receive or transmit, a message construct

must be added. This element assigns the message a name and contains one or more part

child elements that each are assigned a type.

Part elements use the type or element attributes to identify the data type of the message

part. The type attribute can be assigned a simple or complex type and generally is used

for RPC-style messages. Part elements in document-style messages typically rely on the

element attribute, which can reference an XSD element.

<message name=―PersonRequestMessage―>
 <part name=‖RequestParameter―
 Element=‖JC3IEDM:SSN"/>
</message>

<message name=―PersonResponseMessage―>
 <part name=‖ResponseParameter―
 Element=‖JC3IEDM:person"/>
</message>

https://soa.army.mil/publications 23

In the example above two messages are being exchanged through the Web service, one

is a request and the other a response. The first is a message called

―PersonRequestMessage‖ and attached to this message is a validated XSD element from

the JC3IEDM namespace and schema (jc3iedm.xsd). The JC3IEDM:SSN is a request

being pass as input to a web service.

The second message is the response to the request from the first message. This is

evident by the ―ResponseParameter‖ element and the type of data type it is expecting:

JC3IEDM:person. Remember, the XSD schema describes a person as an image, Name,

SSN and Unit. Therefore the response payload will be an XML document similar to the

one below.

<?xml version="1.0"?>
<JC3IEDM:person xmlns:JC3IEDM=http://soa.army.mil/schemas/wma/jc3iedm
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http:// soa.army.mil/schemas/wma/jc3iedm jc3iedm.xsd

 <JC3IEDM:image>1110010101</JC3IEDM:image>

 <JC3IEDM:Name>Joe Smith</JC3IEDM:Name>

 <JC3IEDM:SSN>111-11-1111</JC3IEDM:SSN>

 <JC3IEDM:Unit>A Co, 2/34th</JC3IEDM:Unit>
</JC3IEDM:person>

Seems familiar – it‘s the same XML document (payload) we started with at the beginning

of this paper.

Army SOA XML Data Strategy # 3

WSDL is an XML-based service description on how to communicate using web services. In

order to standardize how we represent WSDL and its constructs‘ in the Army Enterprise,

there are a few things we must ensure.

The following WSDL standardization is proposed:

 WSDL definition section for namespace naming convention will be constructed

with the same namespace naming conventions as the proposed Army SOA Data

Strategy #1 structure.

 The type elements definition within the WSDL will use the import and include

attribute constructs and the namespaces will point to the namespace naming

https://soa.army.mil/publications 24

convention as SOA Strategy #1. The schema (XSD) within the type definition will

always point to a schema structure as outline in the proposed Army SOA strategy

2.

 Schema Data structures will not be directly entered into the WSDL document.

 The message definition portion of the WSDL will only use document-style

messages which rely on the element attribute. The RPC-style type attribute will

not be used within a WSDL document.

 Auto-generated WSDL documents will not be supported under the Army SOA Data

Strategy. Every WSDL will follow standardize naming (namespace) and schema

definition.

https://soa.army.mil/publications 25

The transport Layer- SOAP

SOAP is a protocol for exchanging XML-based messages over computer networks,

normally using HTTP. SOAP forms the foundation layer of the Web services stack,

providing a basic messaging framework so that more abstract layers can build on.

SOAP originally stood for Simple Object Access Protocol, and lately also Service Oriented

Architecture Protocol, but is now simply SOAP. The original acronym was dropped with

Version 1.2 of the standard, which became a W3C Recommendation on June 24, 2003, as

it was considered to be misleading.

SOAP Basics

In the previous section we established that a WSDL definition intentionally separates

abstract from concrete definition details. One of the benefits of doing so is that we can

isolate communication protocols that implements the

messaging required by a service from the

implementation-neutral service interface. Given that

SOAP has become the messaging format of choice for

SOA, we will very likely be binding the abstract

interface of the WSDL to the SOAP protocol.

The structure of SOAP messages consists of header,

body and fault sections, all encased in an enveloped

(See figure 7).

For the purpose of brevity, this paper only covers the

body element of the SOAP document. The Envelope

element is the root of the SOAP message. It contains a

mandatory Body element and an optional Header

element.

The Header portion of the SOAP message has become

a key enabler of the feature set provided by the WS-*

https://soa.army.mil/publications 26

specifications. WS-Policies, WS-Security and reliable messaging are actualized through

the SOAP Header construct.

SOAP Body Element

The Body element is a mandatory child element of the SOAP Envelope element. It

contains the message payload formatted as well-formed XML data.

SOAP message Body constructs are defined within the WSDL message constructs which,

as we‘ve already established, reference XSD schema data type information from the

WSDL types construct (Figure 8).

From the figure above, it is apparent why SOAP couples so well with WSDL. SOAP is the

transport mechanism for web services and it‘s defined through XML standards. Add data

https://soa.army.mil/publications 27

checking (XSD Schemas) and strong naming conventions (namespaces), and we have a

reliable an integrated communication mechanism for documents, applications, services

and data.

Here is an example of how a client might format SOAP message requesting person

information from a web service that may reside in the WMA and using the JC3IEDM

namespace and schema. The client knows a soldier‘s Social Security Number (SSN –

111-11-1111), the request would look like:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 < PersonRequestMessage xmlns=" http://soa.army.mil/schemas/wma/jc3iedm">
 <SSN>111-11-1111</SSN>
 </ PersonRequestMessage >
 </soap:Body>
 </soap:Envelope>

And here is a possible response to the client request:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 < PersonResponseMessage xmlns=" http://soa.army.mil/schemas/wma/jc3iedm">
 <person>
 

 <Name>Joe Smith</Name>

 <SSN>111-11-1111</SSN>

 <Unit>A Co, 2/34th</Unit>
 </person>
 </ PersonResponseMessage >
 </soap:Body>
 </soap:Envelope>

One final point on SOAP; SOAP is versatile enough to allow for the use of different

transport protocols. The standard stacks use HTTP as a transport protocol, but other

protocols are also usable (TCP, SNMP).

https://soa.army.mil/publications 28

Summary

The coupling of Namespace, Schemas (XSD), WSDL and SOAP is proving to be the

driving force behind SOA. The Army faces many challenges as it starts positioning itself

to take advantage of this new architecture.

One of the first steps we must take is to standardize how XML data is represented within

the Army SOA foundation and the Enterprise:

1. SOA XML Data Strategy # 1 – Namespace consistent structures

2. SOA XML Data Strategy # 2 – Schema consistent location structure

3. SOA XML Data Strategy # 3 – Standardizing WSDL abstract description

Hopefully, the content within this document addresses some of the key XML Data

challenges over the horizon. Standardizing on our core (Parent) namespaces and

XSD schemas for our top level Mission Areas and by addressing consistent formats for

the WSDL and SOAP constructs we will be well position to take advantage of this new

technology.

